Deloitte.

Feasibility Study Iron Powder for Energy Cooperatives Final report

13 March 2024

Agenda

1 Introduction

Long-term vision

Short-term plan

3

2

Implications and next steps

The Deloitte Impact Foundation has assisted Metalot in developing a roll out strategy for iron powder with local energy cooperatives

- Metalot is a network organization that focuses on accelerating sustainable, circular developments in the field of metals and renewable energy by combining the knowledge and experience of scientists, government agencies, students, and entrepreneurs
- A key initiative is the development of iron powder as a safe carrier of green hydrogen
- Metalot wants to kick-start the adoption of this technology through pilot projects with local energy cooperatives in the Netherlands
- The Deloitte Impact Foundation has offered to help Metalot in:
 - Identifying pilot projects for the energy cooperatives
 - Assessing the relative costs across the entire value chain
 - Suggesting next steps

Metalot primarily is as facilitator of the emerging iron powder ecosystem in which the energy cooperatives can take roles as both energy generators and consumers

The Iron Powder Ecosystem

Energy coops

A local energy cooperative functions as a pilot that allows Metalot to kick-start the ecosystem

In doing so, Metalot can advance the iron powder technology, whilst limiting risk

Stages of a start-up

- Create a vision for the future ('Zoom Out')
- Raise seed funding and test if the technology solves the problem ('Zoom In')
- If yes, attract more capital

- Prove that there is a market that wants to pay for the product ('Zoom In')
- Check if the vision still holds ('Zoom Out')
- If yes, attract more capital

Current stage

Scale-up

- Test if the product works for additional customers ('Zoom In')
- Check if the visions still holds ('Zoom Out')
- If yes, attract more capital and continue to scale and learn ('Growth Hacking')

We think iron powder can be a competitive heat source for smaller off-grid users especially with support from subsidies and should be piloted with grass drying

Main conclusions

- 1. Iron Powder technology offers a **sustainable**, **autonomous**, and **safe** source of dense heat energy, meeting the needs of various industries, including district heating, food processing, and construction
- 2. Compared to its closest alternative, piped green hydrogen, Iron Powder is **competitive** for **smaller consumers** located **further** from a hydrogen **grid**
- 3. An optimal operational **threshold** for Iron Powder production equipment is **4,000 FLH**, which can be attained through a combination of multiple energy sources and batteries
- 4. Subsidies can play a crucial role as the environmental impact of adopting Iron Powder is significant: using 1 ton of Iron Powder can prevent 11 tons of CO₂ emissions when replacing natural gas, and 19 ton when substituting coal
- 5. Grass drying in Zeeland is a cost-effective pilot as it needs substantial continuous heat in an off-grid location, with green power supplied by a local energy cooperative
- 6. Metalot should engage with parties in Zeeland as well as grant and capital providers to set up the pilot
- 7. In our cost analysis, we focused on comparing iron powder to piped hydrogen, given iron powder's distinctive attributes. It's important to note, though, that there are other green energy alternatives that might offer greater financial advantages

Driven by regulation, customer pressure and internal CSR policies, more and more companies are looking to switch to sustainable energy, including green hydrogen

Drivers for a green energy premium

Iron Powder is a hydrogen carrier with eight unique characteristics

Iron Powder benefits

Autonomous Suitable for industries that do not have a direct link with grids

Dense energy storage

Efficient energy storage with high density that could be stored a few months without loses

Multiply resources usage cycles

Optimizing resource usage across multiple cycles to enhance sustainability for fuel and water mgt

Safe Zero environmental hazards and toxicity traits No gaseous or explosive dangers

Easily transportable

Transport by truck, train, or ship. Minimal loss of energy during transportation

Flexible Efficient and fast changing of power received during combustion process

Can generate high temperatures

Suitable for industries that rely on high-heat production processes

Based on Iron powder's unique characteristics, it primarily will have to compete with piped green hydrogen

Iron Powder benefits vs alternatives

		Green hyd	rogen fuels		Traditio	nal fuels	Power		
	Trucked iron powder	Piped gas	Trucked gas	Trucked ammonia	Biomass	Piped natural gas	Fossil electricity	Green electricity	
Sustainable	2	2	2	2	1	0	0	2	
Safe	2	1	2	0	2	2	2	2	
Autonomous	2	2	2	2	1	0	0	0	
Easily transportable	2	1	0	1	2	1	2	1	
Dense energy storage	2	2	1	1	1	2	0	0	
Flexible	2	2	2	2	2	2	2	0	
High Temperatures	2	2	2	2	2	2	0	0	
Σ	14	12	11	10	11	9	6	5	

Next best alternative

Note: Trucked includes transport by rail or ship

Iron Powder can be cheaper for smaller consumers located further from hydrogen pipelines, as grid expansion becomes increasingly expensive for them

Levelized Cost Of Energy of iron powder -/- piped hydrogen (€/MWh)

			Ann	ual energy co	nsumption (M	Wh)	
		1000	2000	3000	4000	5000	6000
	1	132	139	142	143	144	145
id (km)	5	-72	37	74	92	103	110
e from gri	10	-327	-89,7	-10	28	52	68
Distand	15	-583	-217	-95	-35	1	25
	20	-838	-344	-180	-99	-49	-16

Key assumptions

Cost driver	Assumption
Iron burner power	1,00 MW
Electrolyser & Regenerator working hours	4.744 FLH
Distance between IP Regenerator to the Client	57 km
Required return to capital	8,70%
Electrolyser efficiency	70%
Renting of the production building	No

Note: Assumes same cost of hydrogen, differences follow from iron powder oxidation, regeneration and transportation costs versus pipeline costs Source: Deloitte Iron Powder model

Moreover, competition from the grid will be limited in the mid-term, even in densely populated countries, and everywhere else on the long run

Current Dutch electricity grid

Planned Dutch hydrogen grid

Source: Gasunie; Technologyreview.com

Most attractive industries are district heating, food and construction

Iron powder application assessment

Industry	Autonomous	Easily transportable	Dense energy storage	Multiply resources usage cycles	Safe	Sustainable	Flexible	High temperatures	Current solution	Attractiveness
Ceramics									Natural gas Coal	Medium (6)
District Heating									Natural gas Coal	High (7)
Food									Natural gas Electricity	High (8)
Pulp & Paper									Natural gas Electricity	Low (3)
Electricity Generation									Natural gas	Medium (6)
Chemicals									Natural gas Electricity	Medium (6)
Data Centres		Industry	agnostic						Electricity	Medium (5)
Construction sites									Natural gas Electricity	High (7)
Agriculture									Natural gas Electricity	Medium (5)
Build (residential, commercial)									Natural gas Electricity	Low (4)
Steel									Coke	Medium (5)
Glass									Natural gas Coal	Low (3)
Cement									Natural gas Coal	Medium (5)
							Legend: Low (1	. point) 🛛 🛑 Mec	lium (2 points)	High (3 points)

The technology's optimal utility emerges for medium energy processes are far from green infrastructure, supported by government green energy incentives

Iron powder technology 'sweet spot'

3. Short-term plan

Short-term plan

In the short term, Metalot should identify pilot use cases with energy cooperatives and conduct a financial analysis of these scenarios to assess their profitability

Analyses

Use case identification

- Identify and select a specific use case for the application Iron Powder technology
- Define clear assumptions and explore value chain options, focusing on real-world applicability

Cost assessment and relative position

- Conduct a detailed cost analysis across all segments of the Iron Powder value chain
- To identify the levelized cost of energy (LCOE) for Iron Powder technology consumers
- Identify potential CO₂ emissions reduction and identify how it can influence the LCOE
- Assess the economic viability and potential emission savings of iron powder technology
- Compare iron powder technology with other green energy alternatives in terms of costs

Subsidies application

- Research possible subsidies and identify most applicable
- Identify how they can influence the results of the calculations

2

Short-term plan – Use case identification

Based on the developed criteria for the technology sweet spot, including Industry preference and small to medium energy needs, it was decided to have two use cases: coffee roasting and grass drying

	Coffee roasting (Option 1)	Grass Drier (Option 2)			
Company	Peze	Timmerman Groenvoederdrogerij			
Location	Arnhem	Kortgene			
Power needs	10-20 MW	1-2 MW			
Type of energy needs	Hot air	Hot air			
Stability of the process	Batch processing, 10 hours/day 260 days per year	24/7 operation Seasonal, 7 month per year			
Distance to Hydrogen backbone	10 km	15 km			
Current solution	Natural gas	Coal			
Iron burner power	1 MW	1 MW			
Green energy source	Solar energy	Wind energy			
IP Regenerator location	Uden	Goedereede			
Annual energy needs	2.418 MWh	4.776 MWh			

Use case inputs

Key locations

Short-term plan – Use case identification

Considering pilot stage of the Iron Powder technology, we use the decentralised model with two different green energy sources photovoltaic systems and onshore wind farms

Potential supply chains

We have created a model that compares the LCOE in €/MWh for iron powder with that of green hydrogen supplied via a new pipeline

The model comprises around 90 parameters and various modules, including a dashboard, energy model, financial model, cash flow analysis, and subsidies

inergy flow through value chain Phase Sreen Energy production lydrogen production	Input, MWh				Energy flow th	rough the value chain, MWh	1		
Energy flow through value chain Phase Sreen Energy production lydrogen production	Input, MWh		-		10.002.00				
Phase Green Energy production lydrogen production	Input, MWh				10100,00			Subsidies options	
Green Energy production		Dutout, MVhBer	duction. MVh	[%]	5.000,00			Subsida	Value [1]
lydrogen production	38937	8.955.41	29.981.16		7.000,00			DEI+: Energy & Climate	872.027.50
	7764	5.435,11	2.329,33	56%	8.000,00			DEI+: Hydrogen	153.796.87
legeneration	6626	5.293.21	1.332.87	32%	\$.000,00			IT VEKI	55.800.00
roduction-side storing	5293	5.240,28	52,93	1/	4.000,00			E MOOI	927.027,50
ransportation	5240	5.187.88	52.40	1%	1.000,00			TT EIA	872.027.50
lient-side storing	5188	5.136.00	51.88	14	2.000,00			T MAVAML	1.514.274.13
Combustion	5136	4.776,48	359,52	9%	1.000,00			Total subsidies	******
Overall by system	8955	4,776,48	4,178,93	53%					
analized cast of operatin FUP per M	40%				Levelized co	est of energy, EUR / MWh		Kenfaster	Indicator Moscurement units
been	Annumulated LCOF	lassasa	[22]		€ 350,00			kee kunse energie	100 05/1
-mase Seen Francisco ductico	1 86.29	1 86.29	27%		€ 300,00			kon burner's kours per dau	24.00 [hours not doub
furfromen production	1 185.41	99.11	311/		- € 350,00			kan burnar's number of working daws	214.00 [daws per day]
and a second sec	229.60	E4 20	17.4		§ (300.00			Electrolyces & Decementary under heurs	4 742 95 (have nerveal)
regeneration Roduction-side storing	242.11	1 2.42	174		5 (1000			Distance between IP Reservator and Client	57.00 [km]
renenostation	273.47	21.27	· ·		E C 130,00			Data for betreen in hegenerator and cherk	orjoo panj
ransportation	61.67		10*/		8			Sub-sidio securita a laural	10% (%)
Neoturido storios	276.53	1 3.06	10%		^β € 100,00			Subsidies covering level Required rations to capital	10% [%] 8.70% [%]
Client-side storing	1 276,53	I 3,06	10% 1%		⁸ с 100,00 с 50,00			Subsidies covering level Required return to capital Distance from Hudeneen gride	10% [%] 8,70% [%] 15 Beal
Clent-side storing Combustion	1 276,53 1 315,94	1 3,06 1 39,41	10% 1% 12%		³ ε 100,00 ε 50,00 ε.			Subsidies covering level Required return to capital Distance from Hydrogen grids Electroner afficiency	10% [%] 8,70% [%] 15 [km] 70% [%]
Clent-side storing Combustion Overall by system COFF (Drow to be	1 276,53 1 315,94 1 315,94	i 3,06 i 39,41 i 315,94	10% 1% 12% 100%		³ є 100,00 є 50,00 є - Нуdragen	Storage Storage client	Tetal	Subsidies covering level Required return to capital Distance from Hydrogen grids Electrolyzer efficiency	10% [%] 8,70% [%] 15 [km] 70% [%]

		Value	Calculation methodology 2024	2025	2026	2027
Farana and and an						
INPUTS						
	Windlenergy	[Mwh]	[Total electrisity needs, MWh] / [Capacity factor * 365,25*24]	38.936,57	38.936,57	38.936,57
OUTPUTS						
	Green electricity produced incl for Hydrogen production incl for Regeneration	[MWh] <i>[MWh]</i> <i>[MWh]</i>	[Wind energy, MWh]* [Wind turbine efficiency, %]* [System reduct Reference Reference	c 8.955,41 7.764,44 1.190,97	8.955,41 7.764,44 1.190,97	8.955,41 7.764,44 1.190,97
	System reduction factor	[%]	1-[System reduction rate, $\%$]+[Sustaining investments rate, $\%$]	100%	100%	100%
KEY INDICATORS						
	Remaining energy after step 1	Index	[Wind energy, MWh] / [Green electricity produced, MWh]	0,23	0,23	0,23
	Green Energy needs <i>Energy deliai</i> t	[M\v/h] <i>[M\v/h]</i>	[Electricity needs for Hydroden production, Mwh] + [Electricity nee Green Energy needs; MwNy - Green electricity produced; MWN	8.955,41	8.955,41	8.955,41 -
rogen production						
IMPUTS						
	Green Electricity Top-up Water Water leakages	[MWh] [litres] [litres]	[Electrolyser Power, Mv]] [Working hours, hours] [Hydrogen produced, kg]* [Top-up water, liters per kg hydrogen] [Water leakage rate, X/] [Top-up Water, litres]	7.764,44 1.227.727,17 12.277,27	7.764,44 1.227.727,17 12.277,27	7.764,44 1.227.727,17 12.277,27
OUTPUTS						
	Hydrogen produced Hydrogen produced System reduction factor	[MWh] [kg] [½]	[Capacity of electoliser, MW] * [Alkaline electrolyser efficiency] * [V [Hydrogen produced, kg] * [System reduction factor] 1-[System reduction rate, %]+[Sustaining investments rate, %]	6 5.435,11 137.946,87 100%	5.435,11 137.946,87 100%	5,435,11 137,946,87 100%
KEY INDICATORS						
	Remaining energy after EG	Index	[Hydrogen produced, MWh] / [Green Electricity, MWh]	0,70	0.70	0,70

7.2. Financial model

	Value	Calculation methodology	202		2025	2026	2027
Green Energy production	- dide	calculation methodology	202	*	2025	2020	2027
CAPEX			£ 7,128,01	5 F	53.460 £	53.460 £	53,460
Renewable energy infrastructure	[EUR]	[Required installed capacity, MW] * [Onshore wind farm 1MW benchma	7.128.015.2	0			
Sustaining investments - wind turbine	[EUR]	[Sustaining investments rate, %] * [CAPEX, EUR]			53.460	53.460	53.460
Realization value	(EUR)	[CAPEX, EUR] - [D&A, EUR]					
D&A			€ -	€	285.121 €	287.259 €	289.397
Renewable energy infrastructure	[EUR]	[CAPEX] / [Lifetime equipment]		€	285.121 €	285.121 €	285.121
Sustaining investments - wind turbine	[EUR]	[CAPEX] / [Lifetime equipment]			€	2.138 €	4.277
OPEX				€	71.280 €	71.280 €	71.280
Maintenance of energy generation equipment	[EUR]	[Maintenance rate, % of CAPEX] * [CAPEX Wind system, EUR]			71.280	71.280	71.280
elipeinice			-				
sobsibies	fer cel	The second se	с -				
DEI+: E&C	[EUR]	[Maximal amount of subsidy, EUK] * [Coverage of CAPEX by subsidy, %]					
DEIT: HZ	(EUR)	[Maximal amount of subsidy, EUK] * [Coverage of CAPEX by subsidy, %]					
VENI	[EUR]	[Maximal amount of subsidy, EUK] * [Coverage of CAPEX by subsidy, %]					
EIA EIA	(EUR)	[Maximal amount of subsidy, EUR] * [Coverage of CAPEX by subsidy, %]					
ER MIA (/AMII	[EUR]	[Maximal amount of subsidy, EUR] * [Coverage of CAPEX by subsidy, %]					
may rame	[Long	[maximar amount of subsidy, conj. [contrage of one of subsidy, n]	•				
KEY ANALYTICS INDICATORS							
MWh produced	[MWh]	Reference			8.955,41	8.955,41	8.955,41
Total costs per MWh produced	[EUR] / [MWh]	([OPEX, EUR] + [D&A, EUR])/ [MWh produced, MWh]			39,80	40,04	40,27
CAPEX per MWh produced	[EUR] / [MWh]	[D&A, EUR] / [MWh produced, MWh]			31,84	32,08	32,32
OPEX per MWh produced	[EUR] / [MWh]	[OPEX, EUR] / [MWh produced, MWh]			7,96	7,96	7,96

5.2.1. Inputs subsidies

Type of costs	Measure units	Target year(s)				Green Energy generation	Hydrogen production	Regeneration	Production-side storing	Transportation	Client-side storing	Combustion	Total CAPEX
CAPEX	EUR	Y0 - 2024				7.128.015,20	1.592.259,80	1.537.968,75	0,00	0,00	8.000,00	550.000,00	10.816.243,76
Subsidies	Focus on	Description	Max subsidy	Level	of coverage	Green Energy generation	Hydrogen production	Regeneration	Production-side storing	Transportation	Client-side storing	Combustion	Total
DEI+: E&C	CAPEX	Max €30 min for a pilot or demonstration project in energy saving or CO2 reduction	€ 30.000.	100,00	10%	712.801,52	159.225,98						872.027,50
DEI+: H2	CAPEX	Max €30 min for innovation in hydrogen production, transport, storage, and use	¢ 30.000.	100,00	10%			153.796,87					153.796,87
VEKI	CAPEX	Max €15 min for a go-to-market project of a proven innovation, applicable to a single company	¢ 15.000.	00,00	10%						800,00	55.000,00	55.800,00
MOOI	CAPEX/OPEX	MOOI – Max £4 min for a project that makes industrial production processes and products of industry more sustainable, collaboration of at least 3 ventures	€ 4.000.	100,00	10%	712.801,52	159.225,98					55.000,00	927.027,50
EIA	CAPEX	Tax-allowance for investment in assets that result in less CO2 emissions, up to 10% of investment	10% of	CAPEX	10%	712.801,52	159.225,98						872.027,50
MIA/VAMIL	CAPEX	Tax-allowance for investment environmentally friendly business assets and techniques, up to 14% of investment	14% of	CAPEX	14%	997.922,13	222.916,37	215.315,62	0,00	0,00	1.120,00	77.000,00	1.514.274,13

The use case calculations are based on several technical ...

Key technical assumptions

Item	Description	Option 1 (Solar)	Option 2 (Wind)
Annual energy needs	The total amount of energy required to be supplied by the iron burner during the company's operational hours	2.418 MWh	4.776 MWh
Green energy facilities capacity factor, %	Measure of how much energy is produced by energy production facilities compared to its maximum output. Based on the NL statistics	9,95%	23%
Initial Green energy facilities Power, MW	Power of PV-panels and onshore wind farm that needed to satisfy energy needs for Electrolyser and Regenerator	5,20	4,44
FLH for Electrolyser and Regenerator, hours	Based on the green energy availability, what total hours of utilization the equipment	1.195	4.745
Electrolyser Power, MW	Based on the energy needs, efficiency and FLH, calculated requested power of electrolyser	3,29	1,64
Regenerator Power, MW	Based on the energy needs, efficiency and FLH, calculated requested power of regenerator	2,49	1,24
Number of IP cycles	How many cycles Iron Powder can be used before it should be sold	15	15
Iron burner power, MW	The power of client-site Iron Burner, taken as an constant based on current maximum capacity	1	1
Distance from Hydrogen grids, km © 2024 Deloitte The Netherlands	Distance of client to the hydrogen backbone	10 3100000/240313 Melalot Ca	15 ase for Energy Coops 23

... as well as general assumptions

General model assumptions

- The model is based on the Value chain specified for every option
- Initial use cases are selected at the Status Meeting on February 23
- The model spans a 20-year period
- It is assumed that **ownership of assets is necessary to operate** and derive benefits, except for truck transportation, where third-party electric trucks are utilised
- Green energy production facilities (Electrolyser and Regenerator), are co-located
- Green energy is the single type of energy source for IP production
- The Electrolyser and Regenerator are operational only during green energy production hours; Short-term storage of green energy (batteries) is not included in the value chain
- Cost estimations are based on public sources as of March 1, 2024, and could be subject to change.
- Technical parameters of Iron Powder equipment (electrolyser, regenerator, iron burner) were provided by Metalot
- Equipment works automatically and doesn't need additional personnel on top of maintenance
- It is presumed that there will be no significant technological breakthroughs or market shifts that could make the proposed technology obsolete or introduce a disruptive competitor during the projection period

The main costs for energy from iron powder are investments in equipment and further maintenance across its operational lifespan

Investments in the Iron Powder equipment

Major investments	Option 1 (€)	Option 2 (€)	Comments
CAPEX Renewable energy infrastructure	4.088.845	7.128.015	Investments needed for production green energy for Electrolyser and Regenerator
CAPEX Electrolyser	3.196.782	1.590.714	For Option 1, the required investments in the Electrolyser and Regenerator are
CAPEX Regenerator	3.090.781	1.537.968	notably higher due to the limited number of peak solar hours available to generate electricity, which restricts the operational time for these systems
CAPEX Combustion machine	550.000	550.000	Investments in 1 MW Iron Burner
Total CAPEX in major equipment	10.926.408	10.806.697	

Key operational costs and D&A

Other expenses	Option 1 (€)	Option 2 (€)	Comments
Maintenance of equipment	160.304	127.101	Maintenance vary based on they equipment type in range between 1 and 4,5%
Annual purchase of virgin IP	60.833	120.170	Assumed that Iron Powder can operate 15 cycles and then should be sold
Annual transportation costs	64.826	150.043	Costs for transportation IP and used Iron powder between Clients and a Regenerator

Throughout the entire value chain, almost half of the energy is lost during transformations of iron powder versus about a quarter for piped hydrogen

Energy flow through value chain, %

Nevertheless, for grass drying, with onshore wind as the primary energy source, the iron powder LCOE is competitive due to a mix of high load hours and distance from the grid

Levelized cost of energy for grass drying

Iron powder LCOE for coffee roasting with solar PV-panels as the primary energy source is about 50% higher than piped hydrogen primarily due to low load hours

Levelized cost of energy for coffee Roasting

But costs can be driven down substantially by increasing load hours of both production equipment and the burner itself

Scale impact of Coffee Roaster LCOE

LCOE vs FLH of IP production equipment

- 1% of changes in FLH of Regenerator and Electrolyser changes 4,3% of LCOE for Option 1 and 4,4% for Option 2
- In our opinion, the optimal interval for FLH for Regenerator and Electrolyser should be between 4000 and 8000 FLH

- FLH of Iron burner indicates the amount of energy provided by a 1 MW Iron Burner
- 1% of changes in FLH of Iron Burner changes
 1,6% of LCOE for Option 1 and 2,7% for Option 2
- From the LCOE perspective, the optimal amount of FLH of Iron Burner starting from 5000 FLH

LCOE vs Iron Burner Power

- An increase in Iron Burner capacity by 1% is correlated with a 0,6% decrease in LCOE for both options 1 and 2
- The data suggests that scaling-up burner power yields a marginal gain in efficiency, indicating a diminishing return on investment as the power increases

Also, CO₂ emission allowances can reduce LCOE by 2% and 6% for both coffee roasting and grass drying, however, it won't improve the Iron powder positioning related to other green fuels

CO₂ emission allowances impact on Coffee Roasting LCOE

- For Option 1, **delivering 2,4 GWh** of energy is required to substitute **natural gas** as the primary fuel source
- Annually, using iron powder can prevent 525 tones of CO₂ emissions and generate €27,415 in CO₂ emission allowances
- This results in a **reduction of the LCOE by €11 per MWh**, which is roughly equivalent to a 2% decrease

CO2 emission allowances impact on Grass Drier LCOE

- For Option 2, **delivering 4,8 GWh** of energy is required to substitute **coal** as the primary fuel source
- Annually, using iron powder can **prevent 1,817 tones of CO₂ emissions** and **generate €94,893 in CO₂ emission allowances**
- This results in a **reduction of the LCOE by €20 per MWh**, which is roughly equivalent to a 6% decrease

This is because using iron powder as a fuel alternative significantly reduces CO₂ emissions compared to traditional fuels and not to other green alternatives

Reduction of CO₂ tonnage per ton of iron powder used

Source: https://ourworldindata.org/

Short-term plan – Subsidies

Furthermore, there are subsidy programs oriented on renewable energy and sustainability ...

General sustainability-oriented subsidies

Name	Description	Application Status	Requirements
TSE Industries studies	Innovative pilot or demonstration project	Deadline: 24 March (budget already spent)	 Pilot project to decide whether to continue or not Innovative tech
SDE++	Use of techniques for the generation of renewable energy	Temporarily closed	Closed
DEI+: Energy and Climate	Demonstrate innovation to reduce CO ₂	Deadline: 29 August	 End-user needs to request subsidy
VEKI	Fund to accelerate climate investments in industry	Closed, reopens half March 2024	 Proven technology Exclusive with DEI+ Payback period longer than 5 years
MIA/VAMIL	Tax-allowance for sustainability-related invest.	Continuous	- Investment must be on the "Milieulijst"
EIA	Tax-allowance for green energy / efficiency investments	Continuous	 Investment must be on the "Energielijst"
ΝΙΚΙ	Planned fund to accelerate innovative sustainable investments	Planned, expected to open 2024	Unknown
ΜΟΟΙ	Fund for mission-oriented R&D and innovation in a consortium	Deadline: 18 April	- Collaboration with min. 3 enterprises
HER+	Renewable energy subsidy to support innovation	Closed (might reopen)	Closed

Subsidy is not active 3100000/240313 Melalot Case for Energy Coops 32

Short-term plan – Subsidies ... as well as hydrogen-specific ones

General sustainability-oriented subsidies

Name	Description	Application Status	Requirements
National Growth Fund	Fund for projects with economic growth potential	Planned, expected to open 1 April	- Large projects (ca. 50 million minimum)
MIT: R&D Collab.	Fund for collaborative innovation	Temporarily closed	Min. 2 SMEsR&D Project
WBSO	Tax-allowance for R&D	Continuous	- R&D has to take place

Hydrogen-specific subsidies

Name	Description	Application Status	Requirements
Scaling-up (OWE)	Fund for electrolyser from 0.5 to 50 MW	Temporarily closed	 Hard to combine with other subsidies Produce and use H2
IPCEI	Fund for hydrogen related investments and projects	Closed	Closed
DEI+: Hydrogen	Fund for innovations in renewable H2 production or H2 carriers	Deadline: 25 June	- Innovation in renewable H2

Short-term plan - Subsidies

We assumed five programmes relevant for iron powder

Subsidy assumptions in financial model

Short-term plan - Subsidies

With a coverage of up to 10%, these can lower the LCOE by a further 30%

Key financial modelling assumptions

Potential influence of subsidies on LCOE on Grass Drying

- Assuming that each subsidy can contribute a maximum of 10% to the CAPEX for a specific segment of the value chain, the mentioned subsidies have the potential to decrease the LCOE by up to 30%. Nonetheless, the selection of applicable subsidies and the extent of their coverage can significantly alter this estimate
- Up to now, the most attractive subsidies have been identified as MIA/VAMIL, MOOI, and DEI+
- Additionally, EU subsidies could offer further advantages to the LCOE of Iron Powder technology

4. Implications and next steps

Implications and next steps

With both the zoom-out vision and the zoom-in economics confirmed, Metalot now needs to mobilize the resources to make the grass drying pilot happen

Scale-up strategy Metalot

Implications and next steps

This means reaching out to Timmerman Groenvoederdrogerij, creating local cooperatives and relentlessly drive down costs

High level roadmap

Engage with Timmerman Groenvoederdrogerij

- Initiate communications to pilot Iron Powder technology
- **Collaborate** with RIFT/Iron+ to seek support from Zeeland local authorities
- Fine tune the model based on specified information
- Work with RIFT/Iron+ to **design** a project
- Get subsidies for the project to compensate extra costs

Create energy cooperatives

- Compile a list of companies (energy < 6 GWh, > 10 km from the pipeline) with access to wind power
- Identify candidates for energy cooperatives, and negotiate deals
- Initiate discussions with subsidy providers

Drive down costs

- Integrate mixed green energy sources to achieve over 4000 FLH
- Consider **purchasing** green H₂ as backup
- Evaluate the use of **PEM** electrolysers
- Explore the feasibility of **battery storage** solutions

5. AppendixUse case options

Based on the criteria defined in the Long-term vision, we propose you to choose the case for further calculations

We need your decision what use case you would like we focus on in the business case:

Ceramics factories in the Netherlands operate within a competitive market, facing energy-related challenges while serving diverse clients both domestically and internationally

Proposed use case Option 1: Ceramics factory

Description: The ceramics industry in the Netherlands comprises diverse manufacturers serving construction, household goods, industrial, and artistic sectors. Products include tiles, bricks, sanitaryware, tableware, and decorative items. Competition drives a focus on innovation, sustainability, and quality to meet both local and global demand.

Energy pain points:

- Energy-intensive processes like firing and kiln operations lead to high energy consumption and costs
- Challenging competitiveness and sustainability goals, including emissions reduction

Client locations: Limburg, Gelderland, North Brabant, and South Holland

Iron Powder facilities

Location: Decentralised, based in North Brabant, local farms

Criteria	Indication
Energy needs	Medium: 30-50 MW
Working temperature	Very high: 900°C - 1,400°C
Type of energy needs	High-temperature heat
Stability of the process	Continuous: 24/7 operation with peaks during a day
Territory where located	Industrial zones
Grids limitations	Possible high demand
Current solution	Natural gas, Coal

Coffee beans roasting business can be a good initial client for the Iron Powder Technology

Proposed use case Option 2: Coffee roasting

Description: The country's coffee roasting industry produced an estimated 136,000 tones of roasted, showcasing its significant production scale.

Large-scale coffee roasting consumes considerable energy, primarily for the roasting process. These operations often incorporate energy efficiency and sustainability measures.

Energy pain points: High energy consumption; cost of energy; energy efficiency and sustainability

Client locations: Zaandam, Dordrecht, Utrecht, Arnhem

Production facilities info Location: Decentralised, based in North Brabant, local farms Energy source: Photovoltaic systems

Criteria	Indication
Energy needs	Low: 10-20 MW
Working temperature	Medium : 180°C - 240°C
Type of energy needs	Hot air, Steam
Stability of the process	Batch processing, 8-12 hours/day
Territory where located	Rural/Urban
Grids limitations	Possible limitations
Current solution	Natural gas, Electricity

The Netherlands is a potentially growing market for district heating. There is an urgent need for changing the existing heating source from natural gas into something different and greener

Proposed use case Option 3: District heating

Description: The market emphasizes sustainability and energy efficiency, providing centralized heating solutions to residential, commercial, and industrial properties. Utilizing diverse energy sources like waste heat, geothermal, biomass, and solar thermal energy, it serves as an alternative to individual heating systems.

Energy pain points:

- Balancing heat supply with varying demand, particularly at peak times, poses a challenge for producers.
- Aging networks require maintenance and upgrades, leading to heat losses and inefficiencies.
- Switch to renewables while ensuring reliable and affordable heat supply remains a difficult task for producers.

Client location: Producers operate district heating networks across various municipalities in the Netherlands

Iron Powder facilities

Location: Centralised, based in North Brabant, local farms

Criteria	Indication
Energy needs	High: 100-200 MW
Working temperature	Low: 70°C - 130°C
Type of energy needs	Hot water, Steam
Stability of the process	Seasonal with daily peaks, 24/7 base load
Territory where located	Urban/Rural
Grids limitations	High demand for stability
Current solution	Natural gas, Coal

Grass dryer factories in the Netherlands are part of the agricultural machinery sector, catering to farmers and agricultural businesses involved in hay and grass production

Proposed use case Option 4: Grass dryer

Description: These factories manufacture equipment used for drying grass, hay, and other forage crops to preserve nutritional value and prevent spoilage. The market for grass dryers is influenced by factors such as weather conditions, agricultural policies, and technological advancements in drying technologies.

Energy pain points:

- Energy consumption due to the energy-intensive nature of the drying process.
- Need for more energy-efficient drying technologies and renewable energy sources to power the equipment. **Client location**: In regions with a strong agricultural presence and access to transportation networks

Iron Powder facilities Location: Based in Zeeland

Energy source: Onshore wind farms

Criteria	Indication
Energy needs	Low: 1-5 MW
Working temperature	Low: 40°C to 80°C
Type of energy needs	Hot air, Steam
Stability of the process	Continuous: 24/7 operation but seasonal
Territory where located	Agrarian (for the use case - North Brabant, Limburg)
Grids limitations	Difficulties with electricity grids extension
Current solution	Natural gas, electricity, coal

5. Appendix

Active subsidies overview

Deep dive into recommended subsidies (1/2)

After deep dive, DEI+, VEKI, MOOI and EIA are recommended as likely subsidies to obtain

DEI+: Energy and Climate

- Deadline: 29 August 2024
- Budget: €141 mln total; Max €30 mln

Characteristics

- Subsidy either for *pilot project* or *demonstration project*
 - Pilot project: small-scale, temporary test of a *new* initiative. It cannot have been done before
 - Demonstration project: investment initiative employing new or innovative technologies in the Netherlands, where the installed technology remains operational after the project period
- CAPEX/OPEX: •
 - Pilot project: CAPEX and OPEX
 - Demonstration project: CAPEX
- For demonstration project: end-user needs to request. The end-user needs to stay owner of the installation and it needs to be kept in use after the demonstration project is completed
- Iron powder might fall under the category "Flexibilization of the energy system", for which only pilot projects get subsidy
- Value Chain: all
- Potentially mutually exclusive with VEKI

DEI+: Hydrogen

- Deadline: 25 June 2024
- Budget: €40 mln total; Max €30 mln

Characteristics

- Subsidy for innovation in:
 - Production of hydrogen
 - Transport and storage of hydrogen (carriers)
 - Utilization of hydrogen (carriers) and green electrons
- Subsidy for pilot project, demonstration project, or R&D project
- CAPEX/OPEX:
 - Pilot project: CAPEX and OPEX
 - Demonstration project: CAPEX
- Value Chain: hydrogen production
- Potentially mutually exclusive with VEKI

VEKI

Budget (previous round): €138 mln total; Max €15 mln

Characteristics

- Subsidy for systems that are ready to go-to-market, proven technology
- Projects with a payback period longer than 5 years (without subsidy)
- Subsidy only for individual companies in industry
- The project has to result in CO₂ reduction for the company
- CAPEX/OPEX:
 - Mainly CAPEX
- Value Chain: Client-site storing, Combustion
- · Potentially mutually exclusive with DEI+

Deep dive into recommended subsidies (2/2)

After deep dive, DEI+, VEKI, MOOI and EIA are recommended as likely subsidies to obtain

MOOI

Deadline pre-registration: 18 April 2024

Budget: €61 mln total; Max €4 mln

Characteristics

- At least three ventures, that are not united in a group
- At least €2 mln in costs
- Subsidy for a project that makes industrial production processes and products of industry more sustainable
- Project needs to fit in one of the themes
 - Iron Powder might fit under: "Innovation theme 1: Process innovation through electrification and supply chain innovations"
- CAPEX/OPEX:
 - Both
- Value Chain: all

EIA

Continuous

Budget: €259 mln total; Ca. 10% of investment

Characteristics

- Tax-allowance for investment in assets that result in less CO2 emissions
- Max 40% of investment deductible from profit
- The asset has to be on the "Energielijst"
 - Iron Powder machines are not on there
 - Application can be made for next year
 - Other systems are, e.g. solar panels, electric boiler, electrolyser
- Each asset invested in has to be listed on the application
- CAPEX/OPEX:
 - CAPEX
- Value Chain: all except transport
- Mutually exclusive with MIA/VAMIL for the same asset

MIA/VAMIL

Continuous

Characteristics

- Tax-allowance for investment environmentally friendly business assets and techniques
- MIA: investment deduction of up to 45% of your investment amount, in addition to usual investment deduction
- VAMIL: depreciate 75% of the investment costs at a time of own choosing. Gives a liquidity and interest advantage
- Asset or technique has to be on the "Milieulijst"
- Each asset or technique invested in has to be listed on the application
- CAPEX/OPEX:
 - CAPEX
- Value Chain: all except transport
- Mutually exclusive with EIA for the same asset

Subsidies allocation across the value chain

VEKI, MOOI, EIA, and DEI+: H2 can cover CAPEX and OPEX in different parts of the value chain

Selected subsidies for the business case

Deloitte.

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited ("DTTL"), its global network of member firms, and their related entities (collectively, the "Deloitte organization"). DTTL (also referred to as "Deloitte Global") and each of its member firms and related entities are legally separate and independent entities, which cannot obligate or bind each other in respect of third parties. DTTL and each DTTL member firm and related entity is liable only for its own acts and omissions, and not those of each other. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more.

Deloitte provides industry-leading audit and assurance, tax and legal, consulting, financial advisory, and risk advisory services to nearly 90% of the Fortune Global 500[®] and thousands of private companies. Our professionals deliver measurable and lasting results that help reinforce public trust in capital markets, enable clients to transform and thrive, and lead the way toward a stronger economy, a more equitable society and a sustainable world. Building on its 175-plus year history, Deloitte spans more than 150 countries and territories. Learn how Deloitte's more than 415,000 people worldwide make an impact that matters at www.deloitte.com.

This communication contains general information only, and none of DTTL, its global network of member firms or their related entities is, by means of this communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser. No entity in the Deloitte organization shall be responsible for any loss whatsoever sustained by any person who relies on this communication.

© 2024. For information, contact Deloitte Netherlands.